Advertisements
Advertisements
प्रश्न
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
उत्तर
We know that
\[\sin^{- 1} \left( \sin{x} \right) = x\]
We have
\[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right) = \sin^{- 1} \left\{ \sin\left( \pi - \frac{3\pi}{5} \right) \right\} \left[ \because \left( \pi - \frac{3\pi}{5} \right) \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ = \sin^{- 1} \left( \sin\frac{2\pi}{5} \right)\]
\[ = \frac{2\pi}{5}\]
∴ \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right) = \frac{2\pi}{5}\]
APPEARS IN
संबंधित प्रश्न
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cosec{cot^-1(-12/5)}`
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of sin (cot−1 x).
Write the value of cos−1 (cos 1540°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 (cos 6).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If tan−1 (cot θ) = 2 θ, then θ =