हिंदी

Evaluate - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]

उत्तर

We know that 
\[\sin^{- 1} \left( \sin{x} \right) = x\]
We have
\[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right) = \sin^{- 1} \left\{ \sin\left( \pi - \frac{3\pi}{5} \right) \right\} \left[ \because \left( \pi - \frac{3\pi}{5} \right) \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ = \sin^{- 1} \left( \sin\frac{2\pi}{5} \right)\]
\[ = \frac{2\pi}{5}\]
∴ \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right) = \frac{2\pi}{5}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 32 | पृष्ठ ११८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cos(tan^-1  3/4)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`tan^-1  2/3=1/2tan^-1  12/5`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin1 (sin 1550°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If sin−1 − cos−1 x = `pi/6` , then x = 


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×