हिंदी

Show that - Mathematics

Advertisements
Advertisements

प्रश्न

Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]

उत्तर

We have
\[LHS = \sin^{- 1} \left( 2x\sqrt{1 - x^2} \right)\]
\[\text{Putting }x = \sin a, \text{we get}\]
\[ = \sin^{- 1} \left( 2 \sin a\sqrt{1 - \sin^2 a} \right) \]
\[ = \sin^{- 1} \left( 2\sin a \cos a \right)\]
\[ = \sin^{- 1} \left( \sin 2a \right)\]
\[ = 2a\]
\[ = 2 \sin^{- 1} x \left( \because x = \sin a \right)\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 31 | पृष्ठ ११८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`tan(cos^-1  8/17)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`sin^-1x=pi/6+cos^-1x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of sin (cot−1 x).


Write the value of cos−1 (cos 1540°).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If tan−1 (cot θ) = 2 θ, then θ =

 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×