Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
उत्तर
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
`=>tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=tan^-1 1`
`=>tan^-1((x-2)/(x-1))=tan^-1 1-tan^-1((x+2)/(x+1))`
`=>tan^-1((x-2)/(x-1))=tan^-1((1-(x+2)/(x+1))/(1+(x+2)/(x+1)))`
`=>tan^-1((x-2)/(x-1))=tan^-1((x+1-x-2)/(x+1+x+2))`
`=>tan^-1((x-2)/(x-1))=tan^-1((-1)/(2x+3))`
`=>(x-2)/(x-1)=(-1)/(2x+3)`
`=>2x^2+3x-4x-6=-x+1`
`=>2x^2=1+6`
`=>x^2=7`
`=>x=+-sqrt(7/2)`
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin (5pi)/6)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(tan^-1 24/7)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of sin (cot−1 x).
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
The period of the function f(x) = tan3x is ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`