Advertisements
Advertisements
प्रश्न
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
उत्तर
LHS = `sin^-1 5/13+cos^-1 3/5`
`=sin^-1 5/13+cos^-1 3/5`
`=sin^-1 5/13+sin^-1sqrt(1-(3/5)^2)` `[because sin^-1x=cos^-1sqrt(1-x^2)]`
`=sin^-1 5/13+sin^-1 4/5`
`=sin^-1[5/13sqrt(1-(4/5)^2)+4/5sqrt(1-(5/13)^2)]` `[because sin^-1x+sin^-1y=sin^-1(xsqrt(1-y^2)+ysqrt(1-x^2))]`
`=sin^-1(5/13xx3/5+4/5xx12/13)`
`=sin^-1(3/13+48/65)`
`=sin^-1(63/65)`
`=tan^-1((63/65)/sqrt(1-(63/65)^2))` `[becausesin^-1x=tan^-1(x/sqrt(1-x^2))]`
`=tan^-1((63/65)/(16/65))`
`=tan^-1(63/16)=` RHS
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
`sin^-1(sin pi/6)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`tan(cos^-1 8/17)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`sin^-1x=pi/6+cos^-1x`
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of sin (cot−1 x).
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos−1 (cos 1540°).
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
tanx is periodic with period ____________.