हिंदी

`Sin^-1 5/13+Cos^-1 3/5=Tan^-1 63/16` - Mathematics

Advertisements
Advertisements

प्रश्न

`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`

उत्तर

LHS = `sin^-1  5/13+cos^-1  3/5`

`=sin^-1  5/13+cos^-1  3/5`

`=sin^-1  5/13+sin^-1sqrt(1-(3/5)^2)`         `[because sin^-1x=cos^-1sqrt(1-x^2)]`

`=sin^-1  5/13+sin^-1  4/5`

`=sin^-1[5/13sqrt(1-(4/5)^2)+4/5sqrt(1-(5/13)^2)]`          `[because sin^-1x+sin^-1y=sin^-1(xsqrt(1-y^2)+ysqrt(1-x^2))]`

`=sin^-1(5/13xx3/5+4/5xx12/13)`

`=sin^-1(3/13+48/65)`

`=sin^-1(63/65)`

`=tan^-1((63/65)/sqrt(1-(63/65)^2))`     `[becausesin^-1x=tan^-1(x/sqrt(1-x^2))]`

`=tan^-1((63/65)/(16/65))`

`=tan^-1(63/16)=`  RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.12 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.12 | Q 2.2 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


`sin^-1(sin  pi/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`tan(cos^-1  8/17)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`sin^-1x=pi/6+cos^-1x`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of sin (cot−1 x).


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos−1 (cos 1540°).


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×