Advertisements
Advertisements
Question
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Solution
LHS = `sin^-1 5/13+cos^-1 3/5`
`=sin^-1 5/13+cos^-1 3/5`
`=sin^-1 5/13+sin^-1sqrt(1-(3/5)^2)` `[because sin^-1x=cos^-1sqrt(1-x^2)]`
`=sin^-1 5/13+sin^-1 4/5`
`=sin^-1[5/13sqrt(1-(4/5)^2)+4/5sqrt(1-(5/13)^2)]` `[because sin^-1x+sin^-1y=sin^-1(xsqrt(1-y^2)+ysqrt(1-x^2))]`
`=sin^-1(5/13xx3/5+4/5xx12/13)`
`=sin^-1(3/13+48/65)`
`=sin^-1(63/65)`
`=tan^-1((63/65)/sqrt(1-(63/65)^2))` `[becausesin^-1x=tan^-1(x/sqrt(1-x^2))]`
`=tan^-1((63/65)/(16/65))`
`=tan^-1(63/16)=` RHS
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
`sin^-1(sin (17pi)/8)`
`sin^-1(sin3)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
The value of sin `["cos"^-1 (7/25)]` is ____________.