English

Write the Value of Sin - Mathematics

Advertisements
Advertisements

Question

Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]

Solution

We have
\[\sin\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\} = \sin\left\{ \frac{\pi}{3} - \left( - \frac{\pi}{6} \right) \right\}\]
\[ = \sin\left\{ \frac{\pi}{3} + \frac{\pi}{6} \right\}\]
\[ = \sin\frac{\pi}{2}\]
\[ = 1\]
∴ \[\sin\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\} = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 26 | Page 117

RELATED QUESTIONS

​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Evaluate the following:

`sin(sec^-1  17/8)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`tan^-1  2/3=1/2tan^-1  12/5`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the range of tan−1 x.


Write the value of cos−1 (cos 1540°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Find the domain of `sec^(-1)(3x-1)`.


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×