Advertisements
Advertisements
Question
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Solution
We have
\[\sin\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\} = \sin\left\{ \frac{\pi}{3} - \left( - \frac{\pi}{6} \right) \right\}\]
\[ = \sin\left\{ \frac{\pi}{3} + \frac{\pi}{6} \right\}\]
\[ = \sin\frac{\pi}{2}\]
\[ = 1\]
∴ \[\sin\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\} = 1\]
APPEARS IN
RELATED QUESTIONS
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(sec^-1 17/8)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the range of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Find the domain of `sec^(-1)(3x-1)`.
tanx is periodic with period ____________.