Advertisements
Advertisements
Question
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
Options
e5π/18
e13π/18
e−2π/18
none of these
Solution
(b) e13π/18
Given: \[f\left( x \right) = e^{\cos^{- 1}} \left\{ \sin\left( x + \frac{\pi}{3} \right) \right\}\]
Then,
\[f\left( \frac{8\pi}{9} \right) = e^{\cos^{- 1}} \left\{ \sin\left( \frac{8\pi}{9} + \frac{\pi}{3} \right) \right\} \]
\[ = e^{\cos^{- 1}} \left\{ \sin\left( \frac{11\pi}{9} \right) \right\} \]
\[ = e^{\cos^{- 1}} \left\{ \cos\left( \frac{\pi}{2} + \frac{13\pi}{18} \right) \right\} \left[ \because \cos\left( \frac{\pi}{2} + \theta \right) = \sin\theta \right]\]
\[ = e^{\cos^{- 1}} \left\{ \cos\left( \frac{13\pi}{18} \right) \right\} \]
\[ = e^\frac{13\pi}{18}\]
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`cot{sec^-1(-13/5)}`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 2/3=1/2tan^-1 12/5`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
tanx is periodic with period ____________.
The value of sin `["cos"^-1 (7/25)]` is ____________.