English

Let F (X) = E Cos − 1 { Sin ( X + π 3 } . Then, F (8π/9) = (A) E5π/18 (B) E13π/18 (C) E−2π/18 (D) None of These - Mathematics

Advertisements
Advertisements

Question

Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 

Options

  • e5π/18

  •  e13π/18

  • e−2π/18

  • none of these

MCQ

Solution

(b) e13π/18

Given: \[f\left( x \right) = e^{\cos^{- 1}} \left\{ \sin\left( x + \frac{\pi}{3} \right) \right\}\]
Then,

\[f\left( \frac{8\pi}{9} \right) = e^{\cos^{- 1}} \left\{ \sin\left( \frac{8\pi}{9} + \frac{\pi}{3} \right) \right\} \]
\[ = e^{\cos^{- 1}} \left\{ \sin\left( \frac{11\pi}{9} \right) \right\} \]
\[ = e^{\cos^{- 1}} \left\{ \cos\left( \frac{\pi}{2} + \frac{13\pi}{18} \right) \right\} \left[ \because \cos\left( \frac{\pi}{2} + \theta \right) = \sin\theta \right]\]
\[ = e^{\cos^{- 1}} \left\{ \cos\left( \frac{13\pi}{18} \right) \right\} \]
\[ = e^\frac{13\pi}{18}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 15 | Page 121

RELATED QUESTIONS

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cot{sec^-1(-13/5)}`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`tan^-1  2/3=1/2tan^-1  12/5`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


tanx is periodic with period ____________.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×