English

Find the real solutions of the equation tan-1x(x+1)+sin-1x2+x+1=π2 - Mathematics

Advertisements
Advertisements

Question

Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`

Sum

Solution

We have `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`

⇒ `tan^-1 sqrt(x(x +1)) = pi/2 - sin^-1 sqrt(x^2 + x + 1)`

= `cos^-1 sqrt(x^2 + x + 1)`

= `tan^-1  sqrt(-x^2 - x)/sqrt(x^2 +x + 1)`  ....(From the figure)

⇒ `sqrt(x(x + 1)) = sqrt(-x^2 - x)/sqrt(x^2 + x + 1)`

⇒ `x^2 + x` = 0

⇒ x = 0, –1

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 36]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 7 | Page 36

RELATED QUESTIONS

Find the domain of `f(x)=cos^-1x+cosx.`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×