English

Find the Domain of `F(X)=Cos^-1x+Cosx.` - Mathematics

Advertisements
Advertisements

Question

Find the domain of `f(x)=cos^-1x+cosx.`

Solution

For `cos^-1x` to be defined.

`-1<=x<=1`

Now, cosx is defined for all real values.

So, domain of cosx is R.

Domain of `f(x)   is   R cap[-1,1]=[-1,1]`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.02 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.02 | Q 3 | Page 10

RELATED QUESTIONS

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`sin^-1x=pi/6+cos^-1x`


`4sin^-1x=pi-cos^-1x`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the range of tan−1 x.


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The value of sin `["cos"^-1 (7/25)]` is ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×