English

Evaluate the Following: `Cos(Tan^-1 24/7)` - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`cos(tan^-1  24/7)`

Solution

`cos(tan^-1  24/7)=cos[cos^-1  1/sqrt(1+(24/7)^2)]`    `[therefore tan^-1x=cos^-1  1/sqrt(1+z^2)]`

`=cos[cos^-1  1/sqrt(1+576/49)]`

`=cos[cos^-1  1/(25/7)]`

`=cos[cos^-1  7/25]`

`=7/25`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.08 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 1.9 | Page 54

RELATED QUESTIONS

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×