English

Prove the Following Result: `Sin^-1 12/13+Cos^-1 4/5+Tan^-1 63/16=Pi` - Mathematics

Advertisements
Advertisements

Question

Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`

Solution

LHS = `sin^-1  12/13+cos^-1  4/5+tan^-1  63/16`

`=tan^-1  (12/13)/sqrt(1-144/169)+tan^-1  sqrt(1-16/25)/(4/5)+tan^-1  63/16`     `[becausesin^-1x=tan^-1  x/sqrt(1-x^2)   and   cos^-1x=tan^-1   sqrt(1-x^2)/x]`

`=tan^-1  (12/13)/(5/13)+tan^-1  (3/5)/(4/5)+tan^-1  63/16`

`=tan^-1  12/5+tabn^-1  3/4+tan^-1  63/16`

`=pi+tan^-1((12/5+3/4)/(1-12/5xx3/4))+tan^-1  63/16`       `[because tan^-1x+tan^-1y=pi+tan^-1((x+y)/(1-xy))]`

`=pi+tan^-1((63/20)/(-16/20))+tan^-1  63/16`

`=pi+tan^-1  (-63)/16+tan^-1  63/16`

`=pi-tan^-1  63/16+tan^-1  63/16`
= π = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.11 [Page 82]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 1.2 | Page 82

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Solve the equation for x:sin1x+sin1(1x)=cos1x


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


`sin(sin^-1  1/5+cos^-1x)=1`


`sin^-1x=pi/6+cos^-1x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×