English

`Sin(Sin^-1 1/5+Cos^-1x)=1` - Mathematics

Advertisements
Advertisements

Question

`sin(sin^-1  1/5+cos^-1x)=1`

Solution

`sin(sin^-1  1/5+cos^-1x)=1`

⇒ `sin^-1  1/5+cos^-1x=sin^-1  1`

⇒ `sin^-1  1/5+cos^-1x=pi/2`

⇒ `sin^-1  1/5=pi/2-cos^-1x`

⇒ `sin^-1  1/5=sin^-1x`         `[thereforesin^-1x=pi/2-cos^-1x]`

⇒ `x=1/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.10 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 6 | Page 66

RELATED QUESTIONS

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate:

`cos(tan^-1  3/4)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos−1 (cos 1540°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


The value of sin `["cos"^-1 (7/25)]` is ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×