Advertisements
Advertisements
Question
Write the principal value of `sin^-1(-1/2)`
Solution
Let `y=sin^-1(-1/2)`
Then,
\[\sin{y} = - \frac{1}{2} = \sin\left( - \frac{\pi}{6} \right)\]
\[y = - \frac{\pi}{6} \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\]
Here,
\[\left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\] is the range of the principal value branch of the inverse sine function.
∴ \[\sin^{- 1} \left( - \frac{1}{2} \right) = - \frac{\pi}{6}\]
APPEARS IN
RELATED QUESTIONS
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin3)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`sec{cot^-1(-5/12)}`
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of sin (cot−1 x).
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If sin−1 x − cos−1 x = `pi/6` , then x =
If tan−1 3 + tan−1 x = tan−1 8, then x =
If \[\cos^{- 1} x > \sin^{- 1} x\], then
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`