English

Write the Principal Value of Sin − 1 ( − 1 2 ) - Mathematics

Advertisements
Advertisements

Question

Write the principal value of `sin^-1(-1/2)`

Solution

Let `y=sin^-1(-1/2)`

Then,

\[\sin{y} = - \frac{1}{2} = \sin\left( - \frac{\pi}{6} \right)\]
\[y = - \frac{\pi}{6} \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\]
Here, 
\[\left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\]  is the range of the principal value branch of the inverse sine function.
∴ \[\sin^{- 1} \left( - \frac{1}{2} \right) = - \frac{\pi}{6}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 118]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 39 | Page 118

RELATED QUESTIONS

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin3)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`sec{cot^-1(-5/12)}`


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of sin (cot−1 x).


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If sin−1 − cos−1 x = `pi/6` , then x = 


If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\cos^{- 1} x > \sin^{- 1} x\], then


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×