Advertisements
Advertisements
प्रश्न
Write the principal value of `sin^-1(-1/2)`
उत्तर
Let `y=sin^-1(-1/2)`
Then,
\[\sin{y} = - \frac{1}{2} = \sin\left( - \frac{\pi}{6} \right)\]
\[y = - \frac{\pi}{6} \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\]
Here,
\[\left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\] is the range of the principal value branch of the inverse sine function.
∴ \[\sin^{- 1} \left( - \frac{1}{2} \right) = - \frac{\pi}{6}\]
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
`sin^-1x=pi/6+cos^-1x`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of sin (cot−1 x).
Write the value of cos−1 (cos 1540°).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Find the domain of `sec^(-1)(3x-1)`.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.