हिंदी

Write the Value of Cos−1 (Cos 1540°). - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of cos−1 (cos 1540°).

उत्तर

We know that 

\[\cos^{- 1} \left( cosx \right) = x\]

Now,

\[\cos^{- 1} \left( \cos {1540}^\circ \right) = \cos^{- 1} \left\{ \cos\left( 1440 + {100}^\circ \right) \right\}\]
\[ = \cos^{- 1} \left\{ \cos\left( {100}^\circ \right) \right\} \left[ \because \cos\left( 4\pi + {100}^\circ \right) = \cos{100}^\circ \right]\]
\[ = {100}^\circ\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 13 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


`sin^-1(sin4)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`cos(tan^-1  24/7)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin (cot−1 x).


Write the value of sin1 (sin 1550°).


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

If sin−1 − cos−1 x = `pi/6` , then x = 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×