Advertisements
Advertisements
प्रश्न
Write the value of cos−1 (cos 1540°).
उत्तर
We know that
\[\cos^{- 1} \left( cosx \right) = x\]
Now,
\[\cos^{- 1} \left( \cos {1540}^\circ \right) = \cos^{- 1} \left\{ \cos\left( 1440 + {100}^\circ \right) \right\}\]
\[ = \cos^{- 1} \left\{ \cos\left( {100}^\circ \right) \right\} \left[ \because \cos\left( 4\pi + {100}^\circ \right) = \cos{100}^\circ \right]\]
\[ = {100}^\circ\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
`sin^-1(sin4)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cos(tan^-1 24/7)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin (cot−1 x).
Write the value of sin−1 (sin 1550°).
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
If sin−1 x − cos−1 x = `pi/6` , then x =
If 4 cos−1 x + sin−1 x = π, then the value of x is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
The period of the function f(x) = tan3x is ____________.