Advertisements
Advertisements
प्रश्न
Evaluate the following:
`sec(sin^-1 12/13)`
उत्तर
`sec(sin^-1 12/13)=sec[cos^-1sqrt(1-(12/13)^3)]`
`[thereforesin^-1x=cos^-1sqrt(1-x^2)]`
`=sec[cos^-1(sqrt(1-144/169))]`
`=sec[cos^-1(sqrt(25/169))]`
`=sec[cos^-1 5/13]`
`=sec[sec^-1 13/5]`
`==13/5`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`tan^-1 2/3=1/2tan^-1 12/5`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of sin−1 (sin 1550°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 (cos 6).
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
The set of values of `\text(cosec)^-1(sqrt3/2)`
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`