Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
उत्तर
`tan(2tan^-1 1/5-pi/4)=tan(2 tan^-1 1/5-tan^-1 1)`
`=tan[tan^-1{(2xx1/5)/(1-(1/5)^2)}-tan^-1 1]` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan[tan^-1{(2/5)/(24/25)}-tan^-1 1]`
`=tan[tan^-1 5/12+tan^-1 1]`
`=tan[tan^-1((5/12-1)/(1+5/12))]` `[becausetan^-1x-tan^-1y=tan^-1((x+y)/(1+xy))]`
`=tan[tan^-1((-7/12)/(17/12))]`
`=tan[tan^-1 -7/17]`
`=-7/17`
APPEARS IN
संबंधित प्रश्न
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sec(sin^-1 12/13)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Solve: `cos(sin^-1x)=1/6`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of sin−1 (sin 1550°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of cos−1 (cos 6).
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The period of the function f(x) = tan3x is ____________.