हिंदी

`5tan^-1x+3cot^-1x=2x` - Mathematics

Advertisements
Advertisements

प्रश्न

`5tan^-1x+3cot^-1x=2x`

उत्तर

`5tan^-1x+3cot^-1x=2x`

⇒ `5tan^-1x+3(pi/2-tan^-1x)=2pi`     `[becausecot^-1x=pi/2-tan^-1x]`

⇒ `5tan^-1x+(3pi)/2-3tan^-1x=2pi`

⇒ `2tan^-1x=pi/2`

⇒ `tan^-1x=pi/4`

⇒ `x=tan  pi/4=1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.10 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 10 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


`4sin^-1x=pi-cos^-1x`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of cos−1 (cos 1540°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×