Advertisements
Advertisements
प्रश्न
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
उत्तर
We know that
cosec-1 (cosec θ) = θ, [-π/2,0) ∪ (0,π/2]
`cosec^-1{cosec (-(9pi)/4)}=cosec^-1[-cosec(2pi+pi/4)]`
`=cosec^-1(-cosec pi/4)`
`=cosec^-1(cosec-pi/4)`
`=-pi/4`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
`tan^-1 2/3=1/2tan^-1 12/5`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1) x-tan^(-1)x`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.