Advertisements
Advertisements
प्रश्न
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
उत्तर
Applying parametric differentiation \[\frac{dx}{d\theta}\] =2a − 2acos2 \[\theta\] \[\frac{dy}{d\theta}\] = 0 + 2asin2 \[\theta\] \[\frac{dy}{dx}\] = \[\frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{\sin2\theta}{1 - \cos2\theta}\] Now putting the value of \[\theta\] = \[\frac{\pi}{3}\]
\[\frac{dy}{dx}_\theta = \frac{\pi}{3} = \frac{\sin2\left( \frac{\pi}{3} \right)}{1 - \cos2\left( \frac{\pi}{3} \right)}\]
\[ = \frac{\frac{\sqrt{3}}{2}}{1 + \frac{1}{2}}\]
\[ = \frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{1}{\sqrt{3}}\]
So,
\[\frac{dy}{dx}\] \[\frac{1}{\sqrt{3}}\] at \[\theta = \frac{\pi}{3}\] .
APPEARS IN
संबंधित प्रश्न
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate:
`cos(tan^-1 3/4)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
`tan^-1 2/3=1/2tan^-1 12/5`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.