हिंदी

If X = a (2θ – Sin 2θ) and Y = a (1 – Cos 2θ), Find D Y D X When θ = π 3 . - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .

उत्तर

Applying parametric differentiation \[\frac{dx}{d\theta}\] =2a − 2acos2 \[\theta\] \[\frac{dy}{d\theta}\] = 0 + 2asin2 \[\theta\] \[\frac{dy}{dx}\] = \[\frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{\sin2\theta}{1 - \cos2\theta}\] Now putting the value of  \[\theta\] =  \[\frac{\pi}{3}\]

\[\frac{dy}{dx}_\theta = \frac{\pi}{3} = \frac{\sin2\left( \frac{\pi}{3} \right)}{1 - \cos2\left( \frac{\pi}{3} \right)}\]

\[ = \frac{\frac{\sqrt{3}}{2}}{1 + \frac{1}{2}}\]

\[ = \frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{1}{\sqrt{3}}\]

So,

\[\frac{dy}{dx}\] \[\frac{1}{\sqrt{3}}\] at  \[\theta = \frac{\pi}{3}\] . 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) All India Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate:

`cos(tan^-1  3/4)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


`tan^-1  2/3=1/2tan^-1  12/5`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Write the value of cos−1 (cos 1540°).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×