Advertisements
Advertisements
प्रश्न
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
उत्तर
We know that
\[\sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2}\] and
`cos^-1(-x)=pi-cos^-1x.`
\[\therefore \sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right) = \sin^{- 1} \left( \frac{1}{3} \right) - \left[ \pi - \cos^{- 1} \left( \frac{1}{3} \right) \right]\]
\[ = \sin^{- 1} \left( \frac{1}{3} \right) - \pi + \cos^{- 1} \left( \frac{1}{3} \right)\]
\[ = \left[ \sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} \left( \frac{1}{3} \right) \right] - \pi\]
\[ = \frac{\pi}{2} - \pi \left[ \because \sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2} \right]\]
\[ = - \frac{\pi}{2}\]
∴ \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right) = - \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin pi/6)`
`sin^-1(sin2)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sec(sin^-1 12/13)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
tanx is periodic with period ____________.
Find the value of `sin^-1(cos((33π)/5))`.