हिंदी

If Cos ( Tan − 1 X + Cot − 1 √ 3 ) = 0 , Find the Value of X. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

उत्तर

\[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\]
\[ \Rightarrow \cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = \cos\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \tan^{- 1} x + \cot^{- 1} \sqrt{3} = \frac{\pi}{2}\]
\[ \Rightarrow x = \sqrt{3} \left[ \because \tan^{- 1} y + \cot^{- 1} y = \frac{\pi}{2} \right]\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 56 | पृष्ठ ११९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cosec{cot^-1(-12/5)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of cos−1 (cos 1540°).


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×