हिंदी

If `Sin^-1x+Sin^-1y=Pi/3` And `Cos^-1x-cos^-1y=Pi/6`, Find the Values Of X And Y. - Mathematics

Advertisements
Advertisements

प्रश्न

If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.

उत्तर

`cos^-1x-cos^-1y=pi/6`

⇒ `pi/2-sin^-1x-pi/2+sin^-1y=pi/6`     `[thereforecos^-1x=pi/2-sin^-1x]`

⇒ `-(sin^-1x-sin^-1y)=pi/6`

⇒ `sin^-1x-sin^-1y=-pi/6`

Solving `sin^-1x+sin^-1y=pi/3` and  `sin^-1x-sin^-1y=-pi/6` we will get  `2sin^-1x=pi/6`

⇒ `sin^-1x=pi/12`

⇒ `x=sin  pi/12=(sqrt3-1)/(2sqrt2)`

and

`sin^-1y=pi/3-sin^-1x`

⇒ `sin^-1y=pi/3-pi/12`

⇒ `sin^-1y=pi/4`

⇒ `y=sin  pi/4=1/sqrt2`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.10 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 3 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1(cos3)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find the domain of `sec^(-1)(3x-1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×