हिंदी

Prove that `Sin{Tan^-1 (1-x^2)/(2x)+Cos^-1 (1-x^2)/(2x)}=1` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`

उत्तर

`sin{tan^-1  ((1-x^2)/(2x))+cos^-1 ((1-x^2)/(1+x^2))}=1`

LHS = `sin{tan^-1  ((1-x^2)/(2x))+cos^-1  ((1-x^2)/(1+x^2))}`

`=sin{sin^-1(((1-x^2)/(2x))/sqrt(1+(1-x^2)/(2x)))+cos^-1((1-x^2)/(1+x^2))}`    `[becausetan^-1x=sin^-1  x/sqrt(1+x^2)]`

`=sin{sin^-1((1-x^2)/(1+x))+cos^1((1-x^2)/(1+x^2))}`

`=sin{pi/2}`      `[becausesin^-1x+cos^-1x=pi/2]`

 = 1 = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 4.2 | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cot{sec^-1(-13/5)}`


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


The period of the function f(x) = tan3x is ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×