हिंदी

Evaluate the Following: `Tan^-1(Tan1)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`tan^-1(tan1)`

उत्तर

We know that

`tan^-1(tantheta)=theta,   -pi/2<theta<pi/2`

We have 

`tan^-1(tan1)=1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 3.5 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Find the domain of `f(x)=cos^-1x+cosx.`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cos(tan^-1  3/4)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of sin (cot−1 x).


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Find the domain of `sec^(-1) x-tan^(-1)x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×