Advertisements
Advertisements
प्रश्न
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
उत्तर
Given that
`tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4`
Taking LHS, we get:
`tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))`
`=tan^(-1)[(((x-2)/(x-4)) +((x+2)/(x+4)))/(1-((x-2)/(x-4)) +((x+2)/(x+4)))]`
`=tan^(-1)([((x-2)(x+4)(x+2)(x-4))/(x^2-16-(x^2-4))])`
`=tan^(-1)[(x^2+2x-8+x^2-2x-8)/(12)]`
`=tan^(-1)[(2x^2-16)/(-12)]`
hence
`tan^(-1)[(2x^2-16)/(-12)]=pi/4`
`[(2x^2-16)/(-12)]=tan (pi/4)`
`=>(x^2-8)/(-6)=1`
`=>x^2-8=-6`
`=>x^2=2`
`=>x=+-2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`sin(sin^-1 1/5+cos^-1x)=1`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the principal value of `sin^-1(-1/2)`
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If tan−1 (cot θ) = 2 θ, then θ =
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The value of sin `["cos"^-1 (7/25)]` is ____________.