हिंदी

If tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4 ,find the value of x - Mathematics

Advertisements
Advertisements

प्रश्न

 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

उत्तर

 

Given that

`tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4`

Taking LHS, we get:

`tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))`

`=tan^(-1)[(((x-2)/(x-4)) +((x+2)/(x+4)))/(1-((x-2)/(x-4)) +((x+2)/(x+4)))]`

`=tan^(-1)([((x-2)(x+4)(x+2)(x-4))/(x^2-16-(x^2-4))])`

`=tan^(-1)[(x^2+2x-8+x^2-2x-8)/(12)]`

`=tan^(-1)[(2x^2-16)/(-12)]`

hence

`tan^(-1)[(2x^2-16)/(-12)]=pi/4`

`[(2x^2-16)/(-12)]=tan (pi/4)`

`=>(x^2-8)/(-6)=1`

`=>x^2-8=-6`

`=>x^2=2`

`=>x=+-2`

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) All India Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


`sin(sin^-1  1/5+cos^-1x)=1`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of `sin^-1(-1/2)`


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If tan−1 (cot θ) = 2 θ, then θ =

 


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×