Advertisements
Advertisements
प्रश्न
`sin(sin^-1 1/5+cos^-1x)=1`
उत्तर
`sin(sin^-1 1/5+cos^-1x)=1`
⇒ `sin^-1 1/5+cos^-1x=sin^-1 1`
⇒ `sin^-1 1/5+cos^-1x=pi/2`
⇒ `sin^-1 1/5=pi/2-cos^-1x`
⇒ `sin^-1 1/5=sin^-1x` `[thereforesin^-1x=pi/2-cos^-1x]`
⇒ `x=1/5`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
The value of sin `["cos"^-1 (7/25)]` is ____________.