Advertisements
Advertisements
प्रश्न
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
उत्तर
`(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36`
⇒ `(sin^-1x)^2+(pi/2-sin^-1x)^2=(17pi^2)/36`
Let `sin^-1x=y`
`therefore(y)^2+(pi/2-y)^2=(17pi^2)/36`
⇒ `y^2+pi^2/4+y^2-2xxpi/2xxy=(17pi^2)/36`
⇒ `2y^2-piy=(2pi^2)/9`
⇒ `18y^2-9piy-2pi^2=0`
⇒ `18y^2-12piy+3piy-2pi^2=0`
⇒ `6y(3y-2pi)+pi(3y+2pi)=0`
⇒ `(3y-2pi)(6y+pi)=0`
⇒ `y=pi/6` [Neglecting `y=2/3pi` as it is not satisfying the question]
`thereforex=siny=sin(-pi/6)=-1/2`
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sec(sin^-1 12/13)`
Solve: `cos(sin^-1x)=1/6`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].