हिंदी

If `(Sin^-1x)^2+(Cos^-1x)^2=(17pi^2)/36,` Find X - Mathematics

Advertisements
Advertisements

प्रश्न

If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x

उत्तर

`(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36`

 ⇒ `(sin^-1x)^2+(pi/2-sin^-1x)^2=(17pi^2)/36`

Let `sin^-1x=y`

`therefore(y)^2+(pi/2-y)^2=(17pi^2)/36`

⇒ `y^2+pi^2/4+y^2-2xxpi/2xxy=(17pi^2)/36`

⇒ `2y^2-piy=(2pi^2)/9`

⇒ `18y^2-9piy-2pi^2=0`

⇒ `18y^2-12piy+3piy-2pi^2=0`

⇒ `6y(3y-2pi)+pi(3y+2pi)=0`

⇒ `(3y-2pi)(6y+pi)=0`

⇒ `y=pi/6`   [Neglecting `y=2/3pi` as it is not satisfying the question]

`thereforex=siny=sin(-pi/6)=-1/2`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.10 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 5 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the equation for x:sin1x+sin1(1x)=cos1x


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sec(sin^-1  12/13)`


Solve: `cos(sin^-1x)=1/6`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the principal value of `sin^-1(-1/2)`


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×