Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
उत्तर
We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`
`therefore tan^-1 2x+tan^-1 3x=npi+(3pi)/4`
⇒ `tan^-1((2x+3x)/(1-2x xx3x))=npi+(3pi)/4`
⇒ `(5x)/(1-6x^2)=tan(npi+(3pi)/4)`
⇒ `(5x)/(1-6x^2)=-1`
⇒ `5x=-1+6x^2`
⇒ `6x^2-5x-1=0`
⇒ `(6x+1)(x-1)=0`
⇒ `x=-1/6` [As x=1 is not satisfying the equation]
APPEARS IN
संबंधित प्रश्न
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (13pi)/7)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(sec^-1 17/8)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cos(tan^-1 3/4)`
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If 4 cos−1 x + sin−1 x = π, then the value of x is
tanx is periodic with period ____________.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.