हिंदी

Solve the Following Equation For X: `Tan^-1 2x+Tan^-1 3x = Npi+(3pi)/4` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`

उत्तर

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

`therefore tan^-1  2x+tan^-1  3x=npi+(3pi)/4`

⇒ `tan^-1((2x+3x)/(1-2x xx3x))=npi+(3pi)/4`

⇒ `(5x)/(1-6x^2)=tan(npi+(3pi)/4)`

⇒ `(5x)/(1-6x^2)=-1`

⇒ `5x=-1+6x^2`

⇒ `6x^2-5x-1=0`

⇒ `(6x+1)(x-1)=0`

⇒ `x=-1/6`    [As x=1 is not satisfying the equation]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.01 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (13pi)/7)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sec^-1  17/8)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cos(tan^-1  3/4)`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


tanx is periodic with period ____________.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×