Advertisements
Advertisements
प्रश्न
If tan−1 3 + tan−1 x = tan−1 8, then x =
विकल्प
5
1/5
5/14
14/5
उत्तर
(b) `1/5`
We know that
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \frac{x + y}{1 - xy}\]
Now,
\[\tan^{- 1} 3 + \tan^{- 1} x = \tan^{- 1} 8\]
\[ \Rightarrow \tan^{- 1} \left( \frac{3 + x}{1 - 3x} \right) = \tan^{- 1} 8\]
\[ \Rightarrow \frac{3 + x}{1 - 3x} = 8\]
\[ \Rightarrow 3 + x = 8 - 24x\]
\[ \Rightarrow 3 - 8 = - 24x - x\]
\[ \Rightarrow - 5 = - 25x\]
\[ \Rightarrow x = \frac{5}{25} = \frac{1}{5}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`tan{cos^-1(-7/25)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If tan−1 (cot θ) = 2 θ, then θ =
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`