हिंदी

If Tan−1 3 + Tan−1 X = Tan−1 8, Then X = (A) 5 (B) 1/5 (C) 5/14 (D) 14/5 - Mathematics

Advertisements
Advertisements

प्रश्न

If tan−1 3 + tan−1 x = tan−1 8, then x =

विकल्प

  • 5

  • 1/5

  • 5/14

  • 14/5

MCQ

उत्तर

(b) `1/5`

We know that 
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \frac{x + y}{1 - xy}\]
Now,
\[\tan^{- 1} 3 + \tan^{- 1} x = \tan^{- 1} 8\]
\[ \Rightarrow \tan^{- 1} \left( \frac{3 + x}{1 - 3x} \right) = \tan^{- 1} 8\]
\[ \Rightarrow \frac{3 + x}{1 - 3x} = 8\]
\[ \Rightarrow 3 + x = 8 - 24x\]
\[ \Rightarrow 3 - 8 = - 24x - x\]
\[ \Rightarrow - 5 = - 25x\]
\[ \Rightarrow x = \frac{5}{25} = \frac{1}{5}\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 18 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`tan{cos^-1(-7/25)}`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×