Advertisements
Advertisements
प्रश्न
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
विकल्प
x
`sqrt(1-x^2`
`1/x`
none of these
उत्तर
(a) x
Let \[\cos^{- 1} x = y\]
Then,
\[\sin\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right] = \sin\left[ \cot^{- 1} \left\{ \tan y \right\} \right]\]
\[ = \sin\left[ \cot^{- 1} \left\{ \cot \left( \frac{\pi}{2} - y \right) \right\} \right] \]
\[ = \sin\left( \frac{\pi}{2} - y \right)\]
\[ = \cos{y} \]
\[ = x \left[ \because \cos{y} = x \right]\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate:
`cos{sin^-1(-7/25)}`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If sin−1 x − cos−1 x = `pi/6` , then x =
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
tanx is periodic with period ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`