हिंदी

Sin [ Cot − 1 { Tan ( Cos − 1 X ) } ] is Equal to (A) X (B) √ 1 − X 2 (C) 1 X (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

विकल्प

  • x

  • `sqrt(1-x^2`

  • `1/x`

  • none of these

     
MCQ

उत्तर

(a) x
Let \[\cos^{- 1} x = y\]
Then, 

\[\sin\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right] = \sin\left[ \cot^{- 1} \left\{ \tan y \right\} \right]\]
\[ = \sin\left[ \cot^{- 1} \left\{ \cot \left( \frac{\pi}{2} - y \right) \right\} \right] \]
\[ = \sin\left( \frac{\pi}{2} - y \right)\]
\[ = \cos{y} \]
\[ = x \left[ \because \cos{y} = x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 7 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate:

`cos{sin^-1(-7/25)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If sin−1 − cos−1 x = `pi/6` , then x = 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


tanx is periodic with period ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×