हिंदी

Write the Value of \[\Tan^{- 1} \Left( \Frac{1}{X} \Right)\] For X < 0 in Terms of `Cot^-1x` - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`

उत्तर

\[\tan^{- 1} \left( \frac{1}{x} \right) = \tan^{- 1} \left( - \frac{1}{x} \right)\text{ for } x < 0\]
\[ = - \tan^{- 1} \left( \frac{1}{x} \right)\]
\[ = - \cot^{- 1} x\]
\[ = - \left( \pi - \cot^{- 1} x \right)\]
\[ = - \pi + \cot^{- 1} x\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 53 | पृष्ठ ११९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cot(tan^-1a+cot^-1a)`


`4sin^-1x=pi-cos^-1x`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Write the range of tan−1 x.


Write the value of cos−1 (cos 1540°).


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×