हिंदी

Show that `2tan^-1x+Sin^-1 (2x)/(1+X^2)` Is Constant For X ≥ 1, Find that Constant. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.

उत्तर

We have 

`2tan^-1x+sin^-1  ((2x)/(1+x^2))`

(1) For 1,

`=2tan^-1x+sin^-1  ((2x)/(1+x^2))`

`=pi-sin^-1((2x)/(1+x^2))+sin^-1((2x)/(1+x^2))`     `[because 2tan^-1x=pi - sin^-1((2x)/(1+x^2)),x>1]`

`=pi`

(2) For 1,

`=2tan^-1x+sin^-1  ((2x)/(1+x^2))`

`=2tan^-1(1)+sin^-1((2(1))/(1+(1)^2))`

`=2tan^-1(1)+sin^-1(1)`

`=2(pi/4)+pi/2`

= π

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 6 | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`tan{cos^-1(-7/25)}`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`tan^-1  2/3=1/2tan^-1  12/5`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


If sin−1 − cos−1 x = `pi/6` , then x = 


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If tan−1 (cot θ) = 2 θ, then θ =

 


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×