Advertisements
Advertisements
प्रश्न
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
उत्तर
To prove
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Taking LHS, we get:
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]`
let `x=cos 2theta`
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+cos2theta)+sqrt(1-cos2theta))]=tan^(-1) [(sqrt(1+cos2theta)-sqrt(1-cos2theta))/(sqrt(1+cos2theta)+sqrt(1-cos2theta))]`
`=tan^(-1)[(costheta-sintheta)/(costheta+sintheta)]`
`=tan^(-1)[(1-tantheta)/(1+tantheta)]`
`=tan^(-1) tan(pi/4-theta)`
`=(pi/4-theta)`
`=π/4−θ`
`=π/4−1/2cos^(−1) x`
`=RHS `
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin12)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos−1 (cos 1540°).
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
Find the value of `sin^-1(cos((33π)/5))`.