Advertisements
Advertisements
प्रश्न
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
उत्तर
The maximum value of `sin^-1x` in x ∈ [− 1, 1] is at 1.
So, the maximum value is
`sin^-1(1)`
`=sin^-1(sin pi/2)`
`=pi/2`
Again, the minimum value is at -1.
Thus, the minimum value is
`sin^-1(-1)=-sin^-1(1)`
`=-sin^-1(pi/2)`
`=-pi/2`
So, the difference between the maximum and the minimum value is `pi/2-(-pi/2)=pi`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin pi/6)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If 4 cos−1 x + sin−1 x = π, then the value of x is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`