हिंदी

Solve the Following Equation For X: `Tan^-1 1/4+2tan^-1 1/5+Tan^-1 1/6+Tan^-1 1/X=Pi/4` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`

उत्तर

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

`thereforetan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`

`=>tan^-1  1/4+tan^-1  1/5+tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`

`=>tan^-1((1/4+1/5)/(1-1/4xx1/5))+tan^-1((1/5+1/6)/(1-1/5xx1/6))+tan^-1  1/x=pi/4`

`=>tan^-1((9/20)/(19/20))+tan^-1((11/30)/(29/30))+tan^-1  1/x=pi/4`

`=>tan^-1(9/19)+tan^-1(11/29)+tan^-1  1/x=pi/4`

`=>tan^-1((9/19+11/29)/(1-11/29xx1/x))+tan^-1  1/x=pi/4`

`=>tan^-1 (235/226)+tan^-1  1/x=pi/4`

`=>tan^-1((235/226+1/x)/(1-235/226xx1/x))=pi/4`

`=>(235x+226)/(226x-235)=tan  pi/4`

`=>(235x+226)/(226x-235)=1`

`=>235x+226=226x-235`

`=>9x=-461`

`=>x=-461/9`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 8.1 | पृष्ठ ११६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`tan^-1  2/3=1/2tan^-1  12/5`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×