Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
उत्तर
We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`
`thereforetan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
`=>tan^-1 1/4+tan^-1 1/5+tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
`=>tan^-1((1/4+1/5)/(1-1/4xx1/5))+tan^-1((1/5+1/6)/(1-1/5xx1/6))+tan^-1 1/x=pi/4`
`=>tan^-1((9/20)/(19/20))+tan^-1((11/30)/(29/30))+tan^-1 1/x=pi/4`
`=>tan^-1(9/19)+tan^-1(11/29)+tan^-1 1/x=pi/4`
`=>tan^-1((9/19+11/29)/(1-11/29xx1/x))+tan^-1 1/x=pi/4`
`=>tan^-1 (235/226)+tan^-1 1/x=pi/4`
`=>tan^-1((235/226+1/x)/(1-235/226xx1/x))=pi/4`
`=>(235x+226)/(226x-235)=tan pi/4`
`=>(235x+226)/(226x-235)=1`
`=>235x+226=226x-235`
`=>9x=-461`
`=>x=-461/9`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
`tan^-1 2/3=1/2tan^-1 12/5`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If 4 cos−1 x + sin−1 x = π, then the value of x is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.