Advertisements
Advertisements
Question
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solution
We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`
`thereforetan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
`=>tan^-1 1/4+tan^-1 1/5+tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
`=>tan^-1((1/4+1/5)/(1-1/4xx1/5))+tan^-1((1/5+1/6)/(1-1/5xx1/6))+tan^-1 1/x=pi/4`
`=>tan^-1((9/20)/(19/20))+tan^-1((11/30)/(29/30))+tan^-1 1/x=pi/4`
`=>tan^-1(9/19)+tan^-1(11/29)+tan^-1 1/x=pi/4`
`=>tan^-1((9/19+11/29)/(1-11/29xx1/x))+tan^-1 1/x=pi/4`
`=>tan^-1 (235/226)+tan^-1 1/x=pi/4`
`=>tan^-1((235/226+1/x)/(1-235/226xx1/x))=pi/4`
`=>(235x+226)/(226x-235)=tan pi/4`
`=>(235x+226)/(226x-235)=1`
`=>235x+226=226x-235`
`=>9x=-461`
`=>x=-461/9`
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin (5pi)/6)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Solve: `cos(sin^-1x)=1/6`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the principal value of `sin^-1(-1/2)`
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If sin−1 x − cos−1 x = `pi/6` , then x =
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`