English

Solve the Following Equation For X: `Tan^-1 1/4+2tan^-1 1/5+Tan^-1 1/6+Tan^-1 1/X=Pi/4` - Mathematics

Advertisements
Advertisements

Question

Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`

Solution

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

`thereforetan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`

`=>tan^-1  1/4+tan^-1  1/5+tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`

`=>tan^-1((1/4+1/5)/(1-1/4xx1/5))+tan^-1((1/5+1/6)/(1-1/5xx1/6))+tan^-1  1/x=pi/4`

`=>tan^-1((9/20)/(19/20))+tan^-1((11/30)/(29/30))+tan^-1  1/x=pi/4`

`=>tan^-1(9/19)+tan^-1(11/29)+tan^-1  1/x=pi/4`

`=>tan^-1((9/19+11/29)/(1-11/29xx1/x))+tan^-1  1/x=pi/4`

`=>tan^-1 (235/226)+tan^-1  1/x=pi/4`

`=>tan^-1((235/226+1/x)/(1-235/226xx1/x))=pi/4`

`=>(235x+226)/(226x-235)=tan  pi/4`

`=>(235x+226)/(226x-235)=1`

`=>235x+226=226x-235`

`=>9x=-461`

`=>x=-461/9`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.14 [Page 116]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 8.1 | Page 116

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  (5pi)/6)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Solve: `cos(sin^-1x)=1/6`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the principal value of `sin^-1(-1/2)`


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If sin−1 − cos−1 x = `pi/6` , then x = 


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×