English

The Number of Real Solutions of the Equation √ 1 + Cos 2 X = √ 2 Sin − 1 ( Sin X ) , − π ≤ X ≤ π (A) 0 (B) 1 (C) 2 (D) Infinite - Mathematics

Advertisements
Advertisements

Question

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]

Options

  • 0

  • 1

  • 2

  • infinite

MCQ

Solution

(c) 2

\[For, - \pi \leq x \leq \frac{- \pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \cos{x} = \pi + x \]
\[\text{ It does not satisfy for any value of x in the interval }\left( - \pi, \frac{- \pi}{2} \right)\]
\[For, \frac{- \pi}{2} \leq x \leq \frac{\pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \sqrt{2} \left( \cos x \right) = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \cos{x} = x \]
\[\text{ It gives one value of x in the interval }\left( \frac{- \pi}{2}, \frac{\pi}{2} \right)\]
\[For, \frac{\pi}{2} \leq x \leq \pi\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( \pi - x \right)\]
\[ \Rightarrow \cos{x} = - \pi + x \]
\[\text{ It gives one value of x in the interval } \left( \frac{\pi}{2}, \pi \right)\]
\[\therefore \sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x) \text {gives two real solutions in the interval }\left[ - \pi, \pi \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 10 | Page 120

RELATED QUESTIONS

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  (7pi)/6)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin3)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of sin (cot−1 x).


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×