Advertisements
Advertisements
Question
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solution
We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`
∴ `tan^-1 x/2+tan^-1 x/3=pi/4,`
⇒ `tan^-1((x/2+x/3)/(1-x/2xxx/3))=pi/4`
⇒ `tan^-1(((5x)/6)/((6-x^2)/6))=pi/4`
⇒ `(5x)/(6-x^2)=tan pi/4`
⇒ `(5x)/(6-x^2)=1`
⇒ `5x=6-x^2`
⇒ `x^2+5x-6=0`
⇒ `(x-1) (x+6)=0`
⇒ x = 1 `[because0<x<sqrt6]`
APPEARS IN
RELATED QUESTIONS
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`