Advertisements
Advertisements
Question
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solution
Given: tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Take LHS
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
We know that, Formula
tan−1 x + tan-1 y = tan-1 `(x + y)/(1 - xy)`
Thus,
`=> tan^-1 ((x + 1)+(x - 1))/(1 -(x + 1)xx(x - 1)) = tan^-1 8/31`
`=> tan^-1 (2x)/(1-(x^2 - 1)) = tan^-1 8/31`
`=> tan^-1 (2x)/(1 - x^2 + 1) = tan^-1 8/31`
`=> (2x)/(1 - x^2 + 1) = 8/31`
⇒ 62x = 8 − 8x2 + 8
⇒ 4x2 + 62x − 16 = 0
⇒ 6x2 + 31x − 8 = 0
⇒ 4x(x + 8) − 1(x + 8) = 0
⇒ (4x − 1)(x + 8) = 0
⇒ 6x + 1 = 0 or x − 1 = 0
⇒ x = `1/4` or x = −8
Since,
x = `1/4` ∈ `(-sqrt2, sqrt2)`
So,
x = `1/4` is the root of the given equation
Therefore,
x = `1/4`
APPEARS IN
RELATED QUESTIONS
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
The value of sin `["cos"^-1 (7/25)]` is ____________.