English

Solve the following equation for x: tan−1(x + 1) + tan−1(x − 1) = tan−1831 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`

Sum

Solution

Given: tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`

Take LHS

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`

We know that, Formula

tan−1 x + tan-1 y = tan-1 `(x + y)/(1 - xy)`

Thus,

`=> tan^-1  ((x + 1)+(x - 1))/(1 -(x + 1)xx(x - 1)) = tan^-1  8/31`

`=> tan^-1  (2x)/(1-(x^2 - 1)) = tan^-1  8/31`

`=> tan^-1  (2x)/(1 - x^2 + 1) = tan^-1  8/31`

`=> (2x)/(1 - x^2 + 1) = 8/31`

⇒ 62x = 8 − 8x2 + 8

⇒ 4x2 + 62x − 16 = 0

⇒ 6x2 + 31x − 8 = 0

⇒ 4x(x + 8) − 1(x + 8) = 0

⇒ (4x − 1)(x + 8) = 0

⇒ 6x + 1 = 0 or x − 1 = 0

⇒ x = `1/4` or x = −8

Since,

x = `1/4` ∈ `(-sqrt2, sqrt2)`

So, 

x = `1/4` is the root of the given equation

Therefore, 

x = `1/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.11 [Page 82]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.02 | Page 82

RELATED QUESTIONS

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×