Advertisements
Advertisements
Question
Evaluate:
`cot{sec^-1(-13/5)}`
Solution
`cot{sec^-1(-13/5)}=cot{sec^-1(pi-13/5)}`
`=-cot{sec^-1(13/5)}`
`=-cot{tan^-1(sqrt(1-(5/13)^3)/(5/13))}`
`=-cot{tan^-1(12/5)}`
`=-cot{cot^-1(5/12)}`
`=-5/12`
APPEARS IN
RELATED QUESTIONS
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of cos−1 (cos 6).
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.