English

Evaluate the Following: `Sec^-1(Sec (25pi)/6)` - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`sec^-1(sec  (25pi)/6)`

Solution

We know that

sec-1 (sec θ) = θ,    [0, π/2) ∪ (π/2, π]

 We have 

`sec^-1(sec  (25pi)/6)=sec^-1[sec(4pi+pi/6)]`

`=sec^-1[sec(pi/6)]`

`=pi/6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.07 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 4.8 | Page 42

RELATED QUESTIONS

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin3)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


Find the domain of `sec^(-1)(3x-1)`.


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×