English

The positive integral solution of the equation tan − 1 x + cos − 1 y √ 1 + y 2 = sin − 1 3 √ 10 is (a) x = 1, y = 2 (b) x = 2, y = 1 (c) x = 3, y = 2 (d) x = −2, y = −1 - Mathematics

Advertisements
Advertisements

Question

The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]

Options

  •  x = 1, y = 2

  •  x = 2, y = 1

  •  x = 3, y = 2

  • x = −2, y = −1

MCQ

Solution

(a) x = 1, y = 2
\[\text{We have}, \]
\[ \tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\]
\[\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} \left[ \frac{\sqrt{1 - \left( \frac{y}{\sqrt{1 + y^2}} \right)^2}}{\frac{y}{\sqrt{1 + y^2}}} \right] = \tan^{- 1} \left[ \frac{\frac{3}{\sqrt{10}}}{\sqrt{1 - \left( \frac{3}{\sqrt{10}} \right)^2}} \right]\]
\[\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} \left( \frac{1}{y} \right) = \tan^{- 1} \left( 3 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{x + \frac{1}{y}}{1 - x \times \frac{1}{y}} \right) = \tan^{- 1} \left( 3 \right)\]
\[ \Rightarrow \frac{xy + 1}{y - x} = 3\]
\[ \Rightarrow 3y - 3x = xy + 1\]
\[ \Rightarrow 3x + xy = 3y - 1\]
\[ \Rightarrow x\left( 3 + y \right) = 3y - 1\]
\[ \Rightarrow x = \frac{3y - 1}{3 + y}\]
\[For, y = 1 \Rightarrow x = \frac{1}{2}\]
\[For, y = 2 \Rightarrow x = 1\]
\[For, y = 3 \Rightarrow x = \frac{4}{3}\]
\[For, y = 4 \Rightarrow x = \frac{11}{7}\]
\[For, y = 1 \Rightarrow x = \frac{7}{3} \text{ and so on }. . . . . . \]
\[\text{ Therefore, only integral solutions are } : \]
\[x = 1\text{ and }y = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 5 | Page 120

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×