English

Write the Value of `Sin^-1((-sqrt3)/2)+Cos^-1((-1)/2)` - Mathematics

Advertisements
Advertisements

Question

Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`

Solution

`sin^-1(-x)=-sin^-1x,x in[-1,1]`

`cos^-1(-x)=pi-cos^-1x,x in[-1,1]`

`therefore sin^-1(-(sqrt3)/2)+cos^-1(-1/2)`

`=-sin^-1(sqrt3/2)+pi-cos^-1(1/2)`

`=-sin^-1(sin  pi/3)+pi-cos^-1(cos  pi/3)`

`=-pi/3+pi-pi/3`

`=pi/3`

`thereforesin^-1(-sqrt3/2)+cos^-1(-1/2)=pi/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 116]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 1 | Page 116

RELATED QUESTIONS

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


`sin^-1(sin4)`


`sin^-1(sin12)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


`4sin^-1x=pi-cos^-1x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The period of the function f(x) = tan3x is ____________.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×