Advertisements
Advertisements
Question
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Solution
`sin^-1(-x)=-sin^-1x,x in[-1,1]`
`cos^-1(-x)=pi-cos^-1x,x in[-1,1]`
`therefore sin^-1(-(sqrt3)/2)+cos^-1(-1/2)`
`=-sin^-1(sqrt3/2)+pi-cos^-1(1/2)`
`=-sin^-1(sin pi/3)+pi-cos^-1(cos pi/3)`
`=-pi/3+pi-pi/3`
`=pi/3`
`thereforesin^-1(-sqrt3/2)+cos^-1(-1/2)=pi/3`
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
`sin^-1(sin4)`
`sin^-1(sin12)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`4sin^-1x=pi-cos^-1x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
The period of the function f(x) = tan3x is ____________.
The value of sin `["cos"^-1 (7/25)]` is ____________.