English

Evaluate the Following: `Tan^-1(Tan4)` - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`tan^-1(tan4)`

Solution

We know that

`tan^-1(tantheta)=theta,   -pi/2<theta<pi/2`

We have 

`tan^-1(tan4)=tan^-1[tan(-pi+4)]`

= 4 - π

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.07 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 3.7 | Page 42

RELATED QUESTIONS

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`tan^-1  2/3=1/2tan^-1  12/5`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin1 (sin 1550°).


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If 4 cos−1 x + sin−1 x = π, then the value of x is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the domain of `sec^(-1)(3x-1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×