Advertisements
Advertisements
Question
`sin^-1(sin pi/6)`
Solution
We know
`sin(sin^-1theta)=theta if - pi/2<=theta<=pi/2`
We have
`sin^-1(sin pi/6)=pi/6`
APPEARS IN
RELATED QUESTIONS
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
`sin^-1(sin (13pi)/7)`
`sin^-1(sin (17pi)/8)`
`sin^-1(sin2)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`tan^-1x+2cot^-1x=(2x)/3`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of sin (cot−1 x).
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`
Find the value of `sin^-1(cos((33π)/5))`.