Advertisements
Advertisements
Question
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Solution
\[\tan^{- 1} \left( \frac{1}{1 + 1 \times 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 \times 3} \right) + . . . + \tan^{- 1} \left[ \frac{1}{1 + n \times \left( n + 1 \right)} \right] = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2 - 1}{1 + 1 \times 2} \right) + \tan^{- 1} \left( \frac{3 - 2}{1 + 2 \times 3} \right) + . . . + \tan^{- 1} \left[ \frac{\left( n + 1 \right) - n}{1 + n \times \left( n + 1 \right)} \right] = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( 2 \right) - \tan^{- 1} \left( 1 \right) + \tan^{- 1} \left( 3 \right) - \tan^{- 1} \left( 2 \right) + . . . + \tan^{- 1} \left( n + 1 \right) - \tan^{- 1} \left( n \right) = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( n + 1 \right) - \tan^{- 1} \left( 1 \right) = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left[ \frac{\left( n + 1 \right) - 1}{1 + \left( n + 1 \right) \times 1} \right] = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( \frac{n}{n + 2} \right) = \tan^{- 1} \theta\]
\[ \Rightarrow \theta = \frac{n}{n + 2}\]
Thus, the value of θ is \[\frac{n}{n + 2}\] .
APPEARS IN
RELATED QUESTIONS
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(tan^-1 24/7)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
If 4 cos−1 x + sin−1 x = π, then the value of x is
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .