Advertisements
Advertisements
Question
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Solution
\[2 \tan^{- 1} \left( \cos\theta \right) = \tan^{- 1} \left( 2cosec\theta \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2\cos\theta}{1 - \cos^2 \theta} \right) = \tan^{- 1} \left( 2cosec\theta \right) \left[ 2 \tan^{- 1} x = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \right]\]
\[ \Rightarrow \frac{2\cos\theta}{1 - \cos^2 \theta} = 2cosec\theta\]
\[ \Rightarrow \frac{\cos\theta}{1 - \cos^2 \theta} = \frac{1}{\sin\theta}\]
\[ \Rightarrow 1 - \cos^2 \theta = \sin\theta\cos\theta\]
\[ \Rightarrow \sec^2 \theta - 1 = \tan\theta \left[ \text { Dividing both sides by } \cos^2 \theta \right]\]
\[ \Rightarrow 1 + \tan^2 \theta - 1 = \tan\theta\]
\[ \Rightarrow \tan^2 \theta - \tan\theta = 0\]
\[ \Rightarrow \tan\theta\left( \tan\theta - 1 \right) = 0\]
\[ \Rightarrow \tan\theta = 0 or \tan\theta - 1 = 0\]
\[ \Rightarrow \tan\theta = 0 or \tan\theta = 1\]
\[ \Rightarrow \theta = 0 or \theta = \frac{\pi}{4}\]
It is given that θ ≠ 0
\[\therefore \theta = \frac{\pi}{4}\]
Thus, the value of θ is \[\frac{\pi}{4}\] .
APPEARS IN
RELATED QUESTIONS
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
If tan−1 3 + tan−1 x = tan−1 8, then x =
If \[\cos^{- 1} x > \sin^{- 1} x\], then
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Find the value of `sin^-1(cos((33π)/5))`.