Advertisements
Advertisements
Question
Evaluate:
`cot(tan^-1a+cot^-1a)`
Solution
`cot(tan^-1a+cot^-1a)`
`=cot(pi/2)` `[thereforetan^-1x+cot^-1x=pi/2]`
= 0
APPEARS IN
RELATED QUESTIONS
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
`sin^-1(sin pi/6)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Write the range of tan−1 x.
Write the value of sin−1 (sin 1550°).
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .