English

Evaluate: `Cot(Tan^-1a+Cot^-1a)` - Mathematics

Advertisements
Advertisements

Question

Evaluate:

`cot(tan^-1a+cot^-1a)`

Solution

`cot(tan^-1a+cot^-1a)`

`=cot(pi/2)`        `[thereforetan^-1x+cot^-1x=pi/2]`

= 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.10 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 1.4 | Page 66

RELATED QUESTIONS

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


`sin^-1(sin  pi/6)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Write the range of tan−1 x.


Write the value of sin1 (sin 1550°).


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×